Sufficiency in multiobjective subset programming involving generalized type-I functions

نویسندگان

  • Izhar Ahmad
  • Sarita Sharma
چکیده

In this paper, sufficient optimality conditions for a multiobjective subset programming problem are established under generalized (F ,α, ρ,d)-type-I functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficiency and duality in multiobjective fractional programming problems involving generalized type I functions

*Correspondence: [email protected] Chung-Jen Junior College of Nursing, Health Sciences and Management, Dalin, 62241, Taiwan Abstract In this paper, we establish sufficient optimality conditions for the (weak) efficiency to multiobjective fractional programming problems involving generalized (F,α,ρ ,d)-V-type I functions. Using the optimality conditions, we also investigate a parametric-type dua...

متن کامل

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

Sufficiency and Duality in Multiobjective Programming under Generalized Type I Functions

In this paper, new classes of generalized (F,α,ρ, d)-V -type I functions are introduced for differentiable multiobjective programming problems. Based upon these generalized convex functions, sufficient optimality conditions are established. Weak, strong and strict converse duality theorems are also derived for Wolfe and Mond-Weir type multiobjective dual programs.

متن کامل

Sufficiency and Duality in Multiobjective Programming with Generalized (f, Ρ)-convexity

A multiobjective nonlinear programming problem is considered. Sufficiency theorems are derived for efficient and properly efficient solutions under generalized (F, ρ)-convexity assumptions. Weak, strong and strict converse duality theorems are established for a general Mond–Weir type dual relating properly efficient solutions of the primal and dual problems.

متن کامل

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2007